જો ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ ,હોય તો $n$ ની ન્યૂનતમ કિમત મેળવો કે જેથી $2 - {s_n} < \frac{1}{{100}}$ થાય
$7$
$9$
$8$
$6$
એક ધન પદોની વધતી સમગુણોત્તર શ્રેણીમાં, બીજા અને છઠ્ઠા પદનો સરવાળો $\frac{70}{3}$ છે તથા ત્રીજા અને પાંચમાં પદનો ગુણાકાર $49$ છે. તો ચોથા, છઠ્ઠા અને આઠમાં પદોનો સરવાળો .......... છે.
એક સમગુણોત્તર શ્રેણીનું ચોથું પદ બીજા પદના વર્ગ જેટલું છે અને પ્રથમ પદ $-3$ છે, તો તેનું $7$ મું પદ શોધો.
જો $x, y, z$ સમગુણોત્તર શ્રેણીમાં અને $a^x = b^y = c^z$ હોય, તો . . . . . .
જો એક $64$ પદોની ગુણોત્તર શ્રેણી $(G.P.)$ માં, તમામ પદોનો સરવાળો એ ગુણીત્તર શ્રેણીના અયુગ્મ ક્રમના પદોના સરવાળા કરતા $7$ ઘણો હોય, તો ગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર ............છે.
જો $p, q, r $ કોઇ સમગુણોત્તર શ્રેણીમાં હોય અને $ a, b, c $ કોઇ અન્ય સમગુણોત્તર શ્રેણીમાં હોય, તો $cp, bq $ અને $ar$ એ......