8. Sequences and Series
normal

જો ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ ,હોય તો $n$ ની ન્યૂનતમ કિમત મેળવો કે જેથી $2 - {s_n} < \frac{1}{{100}}$ થાય 

A

$7$

B

$9$

C

$8$

D

$6$

Solution

$S_{n}=1+1 / 2+1 / 2^{2}+\ldots \ldots \ldots+1 / 2^{n-1}$

$S_{n}=\frac{1\left(1-(1 / 2)^{n}\right)}{(1-1 / 2)}=2\left[1-\frac{1}{2^{n}}\right]$

$2-\mathrm{Sn}<\frac{1}{100}$

$\frac{2}{2^{n}}<\frac{1}{100}$

$n \geq 8$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.